The Shrikhande Graph

نویسنده

  • RYAN M. PEDERSEN
چکیده

In 1959 S.S. Shrikhande wrote a paper concerning L2 association schemes [11]. Out of this paper arose a strongly regular graph with parameters (16, 6, 2, 2) that was not isomorphic to L2(4). This graph turned out to be important in the study of strongly regular graphs as a whole. In this paper, we survey the various constructions and properties of this graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of quasi-symmetric designs with eigenvalues of their block graphs

A quasi-symmetric design (QSD) is a (v, k, λ) design with two intersection numbers x, y, where 0 ≤ x < y < k. The block graph of a QSD is a strongly regular graph (SRG), whereas the converse is not true. Using Neumaier’s classification of SRGs related to the smallest eigenvalue, a complete parametric classification of QSDs whose block graph is an SRG with smallest eigenvalue −3, or second large...

متن کامل

New strongly regular graphs from switching of edges

By Seidel’s switching, we construct new strongly regular graphs with parameters (276, 140, 58, 84). In this paper, we simplify the known switching theorem due to Bose and Shrikhande as follows. Let G = (V,E) be a primitive strongly regular graph with parameters (v, k, λ, μ). Let S(G,H) be the graph from G by switching with respect to a nonempty H ⊂ V . Suppose v = 2(k − θ1) where θ1 is the nont...

متن کامل

Conditions for the Parameters of the Block Graph of Quasi-Symmetric Designs

A quasi-symmetric design (QSD) is a 2-(v, k, λ) design with intersection numbers x and y with x < y. The block graph of such a design is formed on its blocks with two distinct blocks being adjacent if they intersect in y points. It is well known that the block graph of a QSD is a strongly regular graph (SRG) with parameters (b, a, c, d) with smallest eigenvalue −m = −k−x y−x . The classificatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007